View Single Post
  #8  
Old November 1st, 2006, 09:56 PM posted to rec.outdoors.fishing.fly
Wolfgang
external usenet poster
 
Posts: 2,897
Default What's a boy to do?


wrote in message
...

I don't see how it's (objectively) counter-intuitive, and I think
attempting to get too involved in "math" (beyond the basic) makes it
more, rather than less difficult - for example, if it had been 4 boards,
two were turned over revealing losers, and then the choice to change
were given, to me, common sense indicates the odds say change your pick
because of the same reasons I feel it does with 3. If you must have
"math," I'm fairly sure the formula would be that the odds in favor of
switching are pretty close to if not exactly x-1/x and the odds in favor
of sticking are always exactly 1/x, when x is greater than 2, but I'm
not a mathematician, so ??? Perhaps the odds in favor need to account
for the first pick when x is higher than 3 - such that it isn't quite
x-1/x - but it's always going to be better odds than 1/x. ****, that's
confusing...that's why, IMO, algebra isn't the way to figure this out.

About the only thing I can figure is that it is much like many threads
on ROFF in that most folks, myself included at times, don't always
_read_ what they are "reading," but rather, um, infer from what is
written by what they _think_ is being said. In this case, they are
simply ignoring that there are 3, not 2, boards and therefore, the
chances cannot be 1 in 2.


No comment on any of that. I just wanted to repost it because it may be the
most beautiful thing I've ever seen!

Heck, given the "game" as outlined by Wolfgang, there's nothing
presented in the "rules" preventing the person from choosing the
revealed losing board - they were simply offered a chance to change
their pick. It would be the chooser making the obvious choice not to
choose it because they can clearly see they won't win (they don't need
to know that the chance of winning is 0 in 3).


Um.....well, o.k., this may be even beautifuler.

Wolfgang
hoo boy!