What's a boy to do?
"riverman" wrote in :
And what's the probability of drawing the longest one first, and the
shortest one after that?
--riverman
Yes, that problem is a matter of combinatorials, but that isn't the
problem you posed.
You toss three darts at a target. Dart A misses the target, then Dart
B
misses by even more. What is the probability that Dart C will miss by
more than Dart A?
I just need to know the distribution of dart C, and the location of Dart
A. I don't even care if darts A,B, and C are independent. It is not a
combinatorial problem. If dart A is 1mm from the target, the probability
is very good that dart C will miss by more. If dart A is a mile from the
target, the probability is very poor.
You could ask your question in a different way, to get the answer you
want, which is "you are going to throw three darts at a target. What is
the probability that the third dart will miss by more than the first
dart?" This is a VERY different question, but the answer is the one you
are describing.
--
Scott
Reverse name to reply
|